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Abstract: Research shows that deep learning algorithms can effectively
improve a single image’s super-resolution quality. However, if the algorithm
is solely focused on increasing network depth and the desired result is not
achieved, difficulties in the training process are more likely to arise. Simultane-
ously, the function space that can be transferred from a low-resolution image
to a high-resolution image is enormous, making finding a satisfactory solution
difficult. In this paper, we propose a deep learning method for single image
super-resolution. The MDRN network framework uses multi-scale residual
blocks and dual learning to fully acquire features in low-resolution images.
Finally, these features will be sent to the image reconstruction module to
restore high-quality images. The function space is constrained by the closed-
loop formed by dual learning, which provides additional supervision for
the super-resolution reconstruction of the image. The up-sampling process
includes residual blocks with short-hop connections, so that the network
focuses on learning high-frequency information, and strives to reconstruct
images with richer feature details. The experimental results of ×4 and ×8
super-resolution reconstruction of the image show that the quality of the
reconstructed image with this method is better than some existing experimen-
tal results of image super-resolution reconstruction in subjective visual effects
and objective evaluation indicators.
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1 Introduction

Single-image super-resolution reconstruction (SISR) and multi-image super-resolution recon-
struction are the two types of image super-resolution reconstruction (SR). This study focuses on the
super-resolution reconstruction of a single image. SISR technology aims to transform low-resolution
(LR) images into high-resolution (HR) counterparts [1,2]. It is widely used in the fields of medical
imaging [3], image compression [4], remote sensing [5], security [6], and underwater target recognition

http://dx.doi.org/10.32604/jnm.2022.027826
mailto:zhangliguo@hrbeu.edu.cn


28 JNM, 2022, vol.4, no.1

[7]. High-quality images require not only sufficient pixel density; but also rich detailed information.
Super-resolution reconstruction is an ill-conditioned inverse problem. The main challenge faced by
many researchers is that LR images can correspond to multiple HR images, and it is very difficult
to restore HR images with vivid and rich details. According to studies, image super-resolution
reconstruction has always been a difficulty in the realm of computer vision. Because of the rapid rise
of deep learning technology, it has quickly become a major tool for current SISR approach research
[2,7–10].

The difficulty of trying to rebuild HR images from LR images is essentially an ill-conditioned task,
according to research. This is because the LR image might correlate to numerous HR images, and the
available mapping space is enormous, making finding the correct relationship extremely challenging.
Furthermore, when high magnification is necessary, the reconstructed image’s features are frequently
inadequate. Collecting useful context information from LR images is critical for reconstructing the
high-frequency details of HR, as stated in the previous section of the research [11].

Deeper convolutional neural networks have been effectively employed to recreate single image
super-resolution in recent years [12–14], and the structure of CNN has been continuously enhanced
[15]. The benefit of utilizing a deep network is that it can use a bigger receptive field to extract more
contextual information from the LR image to predict the information in the HR image. However,
simply raising the network depth will cause the features to fade away throughout the transmission
process, making it difficult to recover the image’s details.

This study aims to contribute to this growing area of research by exploring residual networks and
regression networks. We proposed the MDRN network framework. To construct the down-sampling
section of the network in this framework, we coupled the utilization of multi-scale residual blocks
(MSRB) [11]. At various sizes, it may be utilized to extract image information. By integrating local
multi-scale features and global features during feature extraction, it may maximize the use of LR image
features and effectively tackle the problem of feature disappearance during transmission. Furthermore,
the introduced 1 × 1 kernel convolutional layer can achieve global feature fusion.

The dual regression method is used in the reconstruction module to reduce the possible spatial
function of the LR data by introducing a regression scheme with additional constraints [16]. The newly
learned double regression mapping, in addition to the LR to HR image mapping, forms a closed-
loop for the down-sampling kernel, providing additional supervision for reconstructing the LR image,
significantly reducing the mapping space and enabling greater feature retention.

The model is trained using the DIV2K data set, with no weight initialization or additional training
approaches. Our model has produced good results based on the ensuing experimental data. The
following is a summary of our contributions:

� A multi-scale residual block is utilized in the down-sampling process to adaptively detect image
features and realize feature fusion of different scales. The residual channel attention block can
be used to fully understand the image features throughout the up-sampling process. When the
two modules are combined, an excellent super-resolution effect can be achieved.

� The function mapping from the LR image to the HR image can be built into a constrained
closed loop using the dual learning framework, and the LR image reconstructed based on this
can be utilized to improve the performance of the SR model.
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2 Related Work
2.1 Single Image Super-Resolution

Image super-resolution is an improper inverse technique, and the input LR image has several
equivalent outputs. A variety of image super-resolution algorithms have been developed to handle
this inverse problem, including interpolation-based methods [17], reconstruction-based methods [18],
and learning-based methods [11,16,19–22]. The interpolation-based method has the advantage of low
complexity, but the contour edge of the reconstructed image is blurred, the details are not clear enough,
and the accuracy is somewhat lacking. In different contexts, reconstruction-based approaches will
have different performance discrepancies. The deep learning method requires more training data than
the classic interpolation method, but it provides great denoising and augmentation results. It learns
the difference in complexity between low-resolution and high-resolution images using a deep neural
network’s powerful nonlinear reflection ability. Richer image features and texture information can be
restored via the mapping relationship.

The deep learning-based SISR approach can learn the mapping relationship between the end-to-
end LR image and the HR image directly. Super-Resolution Convolutional Neural Network (SRCNN)
[22], a SISR approach based on convolutional neural networks, was first proposed by Dong et al.
SRCNN employs only three convolutional layers and learns the nonlinear mapping between LR
and HR image from start to finish [23]. Kim et al. presented a deeper network SISR approach
based on the global residual learning method [24]. It has been discovered that images of various
magnifications can be combined for training purposes, allowing the model to solve the SR problem
of images of various magnifications. Tai et al. devised Deep Recursive Residual Network (DRRN),
which combines the local residual learning and global residual learning of the multi-path mode,
as well as the SR method of multi-weight recursive learning, to successfully restrict the increase of
network parameters while expanding the network depth [25]. Through the sharing of parameters
between residual units, the performance of VDSR and DRCN [26] is improved. The input image
contains rich low-frequency and high-frequency information. The existing CNN-based SR network
does not treat each channel of this information differently, which limits the expressive ability of
the network. Therefore, Zhang et al. [11] proposed a 400-layer residual network Residual Channel
Attention Networks (RCAN) with a channel attention mechanism, which uses the RIR structure to
ease the burden of information transmission, and can learn coarse-grained residual information to
stabilize the training process. To obtain reconstructed images with different magnification factors,
multi-scale images based on residual networks can be done. Lai et al. [27] proposed the SISR method
LapSRN of the Laplacian Pyramid Super-Resolution Network, which gradually up-sampling and
predicts residuals, and can simultaneously complete HR image reconstruction of multiple sizes. The
Multi-Scale Residual Network (MSRN) method proposed by Li et al. [11] is an image SR network
that can use multi-scale hierarchical features to zoom in at any scale. It uses convolutional layers of
different receptive fields in the residual block to extract different scales. Feature information further
improves the performance.

The above method uses a lightweight network. The depth of the network and the number of
parameters are important factors that affect the performance of SISR. Some heavyweight networks
have also achieved good results. Lim et al. [28] proposed a heavyweight Enhanced Deep Super-
Resolution Network (EDSR) method, which removed the normalization module and superimposed
the residual block. The Residual Dense Network (RDN) method proposed by Zhang et al. [23]
combines residual structure; and dense structure; and makes full use of the hierarchical feature
information of LR images. High-resolution reconstruction of the LR images obtained from different
degradation models has achieved good reconstruction results. Liu et al. [29] proposed the Residual
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Feature Aggregation Network (RFANet) method, which uses a spatial attention module with larger
receptive fields and smaller parameters in the residual block. By filtering the feature information, and
fusing the features extracted by the residual branch of each residual block, the image reconstruction
quality is improved.

Most of the previous techniques do not fully utilize the information contained in each convolu-
tional layer. Local convolutional layers cannot directly access the following layers, even though gate
units in storage blocks are offered as a way to regulate short-term memory. It’s also difficult to say
that the memory block can fully utilize all layers’ information.

2.2 Residual Learning
Is it possible to lower the training error by adding a new layer to the neural network model after

enough training? In theory, the previous model’s solution space is just a subspace of the new model’s
solution space, and the newly added layer can be trained as an identity mapping. The more layers
appear to be simpler to lower the training error since the new model may be able to find a better
solution to fit the training data set. However, it has been discovered that when too many layers are
added to the training process, the error does not reduce but rather grows. Moreover, the depth of the
network has a great influence on the SISR. In the neural network, the local residual block is used to
simplify the training of the network.

Currently, many feature extraction blocks have been proposed thus far. The easy linking of various
characteristics at different scales, as shown in Fig. 1, will lead the local features to be underutilized.
(Fig. 1a) The goal is to make network training easier so that it can produce more competitive results.
When dense blocks are introduced (Fig. 1b), both residual blocks and dense blocks employ the same
size convolution kernel, increasing the computational cost of dense blocks [30].

Figure 1: (a) Residual block. (b) Dense block

The deep residual channel attention network’s concept is to build a deep network with residual
in residual (RIR) structure, which is made up of numerous residual groups connected by long-hop
connections [21]. There are several residual blocks with short jump connections in each residual group.
The entire RIR structure uses multiple hop connections to allow low-frequency information to bypass
the network; so that the backbone network only learns high-frequency information. The channel
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attention mechanism (CA) adaptively adjusts the weights of different channels by considering the
interdependence between channels.

2.3 Dual Learning
In real life, artificial intelligence tasks that have meaning and practical value often appear in pairs.

Dual learning involves at least two learning tasks. These two tasks are formed into a closed-loop
feedback system, and the feedback information is used to improve the two machine learning models
in the dual-task.

The dual learning approach consists of an original model and a dual model, which can simultane-
ously train two opposed mappings to improve language translation performance. The key is that the
model of the original task can provide feedback to the model of the dual-task. The parameters of the
original model and the dual model are shared, which means that the model can have fewer parameters.
Compared to standard supervised learning, the data will be more fully utilized. Due to the sharing
of parameters, the complexity of the two models is reduced, so there will be better generalization
capabilities. CycleGAN [31] and DualGAN [32] are two recent examples of this technology being
utilized to conduct image translation without paired training data. The loop consistency loss is
proposed to help decrease the distribution difference and avoid the mode collapse problem of the
GAN approach. These solutions, however, cannot be applied directly to conventional SR situations.
As a result, a closed-loop can be utilized to minimize the number of SR functions that are conceivable.

3 Proposed Method

The main purpose of this paper is to use the low-resolution image to rebuild the super-resolution
image. The primary structure of the network and its significant components are mostly introduced in
this part. The multi-scale dual residual network (MDRN) is made up of two main components: the
feature extraction module and the image reconstruction module. Fig. 2 depicts the broad structure of
our concept, which will be detailed in the next chapters.

Figure 2: MDRN frame structure
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3.1 Feature Extraction Module
Both the down-sampling module and the up-sampling module contain log 2(s) basic blocks, where

s is the scale factor. It is equivalent to using 2 blocks for 4 times magnification and 3 blocks for 8 times
magnification. The feature extraction module includes the convolutional layer, the LeakyReLU layer,
and the residual layer for feature extraction of the input image. Here, the residual structure is used
in the hope that more detailed features can be extracted and put into the dual model for supervision.
As shown in Fig. 3, it is the main structure of our feature extraction module, the content of which is
described in detail below.

Figure 3: The structure of the feature extraction module

We use multi-scale residual blocks to extract features and design a two-bypass network to learn
image features of multiple sizes throughout the down-sampling process. Convolution kernels are used
differently by different bypasses. Image features of various scales can be detected by transferring
information between the two bypasses.

D1 = σ(w1
3×3 ∗ Mn−1 + b1) (1)

T1 = σ(w1
5×5 ∗ Mn−1 + b1) (2)

D2 = σ(w2
3×3 ∗ [D1, T1] + b2) (3)

T2 = σ(w2
5×5 ∗ [T1, D1] + b2) (4)

D′ = w3
1×1 ∗ [D2, T2] + b3 (5)

where w and b represent weights and deviations, w1
3×3 represents the use of a 3 × 3 convolution kernel

in the first layer, and so on. σ (x) = max(0, x) represents the ReLU function, [D1, T 1] represents the
series operation.

For image feature extraction, we use the multi-scale residual block described in [11]. If the number
of feature maps is denoted by the letter M. M feature maps will output from the first convolutional
layer, while 2 M feature maps are output from the second convolutional layer. The 1 × 1 convolutional
layer receives these feature maps and can make the number of input and output feature maps the same.

For each MSRB we use residual learning, which can be described as:

Mn = D′ + Mn−1 (6)
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Among them, Mn and Mn−1 represent MSRB input and output, respectively. The operation
D′ + Mn−1 is performed through shortcut connection and element-wise addition.

3.2 Image Reconstruction Module
The image reconstruction module is a dual network that creates down-sampled LR images from

super-resolution images to give extra supervision to the model. The emphasis is on learning the down-
sampling procedure, which is made up of two convolutional layers and a LeakyReLU layer. As seen in
Fig. 4, the main body employs a dual learning framework that employs the channel attention module.
The up-sampling section incorporates B residual channel attention blocks with small jumps, which can
boost the model’s capacity. Short-hop connections can filter unwanted low-frequency information.

Figure 4: The structure of the up-sampling module

The interdependence between feature channels is used to construct a channel attention mechanism
to have the network pay attention to additional information features. There are two main issues to
consider. One is that the information in the LR space has a lot of low-frequency information and
a lot of high-frequency information. Details such as edges and textures in the area are common in
high-frequency components. The other is that each filter in the convolution layer operates with a local
receptive field. As a result, outside of the immediate area, the output of convolution cannot utilize
context information. The channel approach is used to capture the channel’s reliance on aggregated
data using global average pooling, and a sigmoid function mechanism is implemented.

s = f (WUδ(WCz)) (7)

Among them, sigmoid gating and ReLU functions are denoted by f ( · ) and δ( · ) , respectively. W C

is a Conv layer weight set that functions as the channel reduction and reduction ratio r.

We employed the PixelShuffle method and the residual channel attention block in the up-sampling
process. The feature of each channel is adaptively rescaled by modeling the dependency between feature
channels using the channel attention method. During the up-sampling process, PixelShuffle exploits
multi-channel recombination of the convolution kernel to get high-resolution feature maps from low-
resolution feature maps. Learning dual regression mapping estimates the down-sampling kernel to
reconstruct low-resolution images to give extra supervision for the network. With this additional
limitation, the available mapping space from low resolution to high resolution may be constrained.
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4 Experiment
4.1 Implementation Details

The training dataset we use is DIV2K, and the input of the network is obtained by down-sampling
the original images in the data set by bicubic interpolation. The ADAM optimizer with the parameters
set to β1 = 0.9, β2 = 0.999, and ε = 10−8 uses the weight normalization processing in the training model,
the learning rate is set to 10−4, and a total of 1000 iteration cycles are trained. And the loss function is
the L1 loss function. Use the Set5 standard test dataset and the 801st to 900th images in the DIV2K
dataset for comparison experiments. For testing, use Set14, BSDS100, Urban100, and Manga109.
Consider the average peak signal-to-noise ratio (PSRN) and structural similarity (SSIM) to evaluate
the experimental outcomes. PyTorch was used to create the model, which was then trained on an
NVIDIA Quadro RTX 5000.

4.2 Quantitative Analysis
On the one hand, the evaluation index of image super-resolution reconstruction quality can be

judged as subjective evaluation by human eyes, which is more one-sided. On the other hand, PSNR and
SSIM are used as objective evaluation indexes. The PSNR is an evaluation metric that is sensitive to the
mistake of reconstructed pixels and ignores the human eye’s visual features. The SSIM is assessed using
the three dimensions of brightness, contrast, and structure, with a focus on people’s subjective feelings.
Combining the two evaluation indicators can more objectively evaluate the quality of the reconstructed
image. For ×4 and ×8 SR, the algorithm in this paper is compared with 11 SR methods. As shown in
Tab. 1, in the comparison algorithm, Bicubic is a traditional bicubic interpolation algorithm, SRCNN
[22], ESPCN [15] and FSRCNN [33] are shallow linear networks based on CNN, VDSR [34] is a deep
linear network, DRCN [26] is a recursive network, and LapSRN [27] is a progressive reconstruction
Network, EDSR is the residual network. It can be seen from Tab. 1 that our model performs better
than other models on different magnification factors and test data sets.

Table 1: Quantitative evaluation of different SR algorithms on ×4 and ×8

Algorithm Scale Set5 PSNR/
SSIM

Set14
PSNR/
SSIM

BSDS100
PSNR/
SSIM

Urban100
PSNR/
SSIM

Manga109
PSNR/
SSIM

Bicubic ×4 28.43/0.8022 26.10/0.6936 25.97/0.6517 23.14/0.6599 24.91/0.7826
SRGAN [35] ×4 29.46/0.8380 26.60/0.7180 25.74/0.6660 24.50/0.7360 27.79/0.8560
A+ [21] ×4 30.33/0.8565 27.44/0.7450 26.83/0.6999 24.34/0.7211 27.03/0.8439
SRCNN [22] ×4 30.50/0.8573 27.62/0.7453 26.91/0.6994 24.53/0.7236 27.66/0.8505
ESPCN [15] ×4 30.66/0.8646 27.71/0.7562 26.98/0.7124 24.60/0.7360 27.70/0.8560
FSRCNN [33] ×4 30.73/0.8601 27.71/0.7488 26.98/0.7029 24.62/0.7272 27.90/0.8517
VDSR [34] ×4 31.36/0.8796 28.11/0.7624 27.29/0.7167 25.18/0.7543 28.83/0.8809
LapSRN [27] ×4 31.54/0.8811 28.19/0.7635 27.32/0.7162 25.21/0.7564 29.09/0.8845
DRCN [26] ×4 31.56/0.8810 28.15/0.7627 27.24/0.7150 25.15/0.7530 28.98/0.8816
DBPN [36] ×4 32.42/0.8970 28.75/0.7860 27.67/0.7390 26.38/0.7940 30.90/0.9130
EDSR [28] ×4 32.46/0.8968 28.80/0.7876 27.71/0.7420 26.64/0.8033 31.02/0.9148
MDRN (Our) ×4 32.57/0.9000 28.82/0.7986 27.73/0.7436 26.62/0.8145 31.55/0.9193
Bicubic ×8 24.40/0.6045 23.19/0.5110 23.67/0.4808 20.74/0.4841 21.46/0.6138

(Continued)
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Table 1: Continued
Algorithm Scale Set5 PSNR/

SSIM
Set14
PSNR/
SSIM

BSDS100
PSNR/
SSIM

Urban100
PSNR/
SSIM

Manga109
PSNR/
SSIM

SRGAN [35] ×8 23.04/0.6260 21.57/0.4950 21.78/0.4422 19.64/0.4685 20.42/0.6253
A+ [21] ×8 25.53/0.6548 23.99/0.5535 24.21/0.5156 21.37/0.5193 22.39/0.6454
SRCNN [22] ×8 25.34/0.6471 23.86/0.5443 24.14/0.5043 21.29/0.5133 22.46/0.6606
ESPCN [15] ×8 25.75/0.6738 24.21/0.5109 24.37/0.5277 21.59/0.5420 22.83/0.6715
FSRCNN [33] ×8 25.42/0.6440 23.94/0.5482 24.21/0.5112 21.32/0.5090 22.39/0.6357
VDSR [34] ×8 25.73/0.6743 23.20/0.5110 24.34/0.5169 21.48/0.5289 22.73/0.6688
LapSRN [27] ×8 26.15/0.7028 24.45/0.5792 24.54/0.5293 21.81/0.5555 23.39/0.7068
DRCN [26] ×8 25.93/0.6743 24.25/0.5510 24.49/0.5168 21.71/0.5289 23.20/0.6686
DBPN [36] ×8 27.25/0.7860 25.14/0.6490 24.90/0.6020 22.72/0.6310 25.14/0.7980
EDSR [28] ×8 27.03/0.7740 24.91/0.6420 24.81/0.5985 22.51/0.6221 24.69/0.7841
MDRN (Our) ×8 27.21/0.7915 25.06/0.6516 24.78/0.6045 22.77/0.6426 25.11/0.7985

4.3 Qualitative Analysis
The seven algorithms of Bicubic, A+ [21], SRCNN [22], FSRCNN [33], VDSR [34], LapSRN

[27], and DRCN [26] are selected for qualitative comparison with the algorithm of this paper. Figs. 5
to 8 show the super-resolution visual effects of the 4 standard test sets under ×4 magnification. We
compared the “baby” image in the Set5 standard test data set, the “baboon” image in the Set14
standard test set, the “76053” image in the BSDS100 test set, and the “img001” image in the Urban100
test set. Manga109 is a comic data set. Since this training set does not contain any comic images, the
renderings are not displayed for comparison. It can be seen from a subjective vision that the local
details in the reconstruction results of other methods are seriously blurred and distorted, and the
reconstruction details of our model are better and clearer. For example, in Fig. 8 in the “image001”
image, our reconstruction result is significantly clearer than other models, which is very close to the
original image.

Figure 5: Visualized results of (baby) ×4 SR on Set5
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Figure 6: Visualized results of (baboon) ×4 SR on Set14

Figure 7: Visualized results of (76053) ×4 SR on BSDS100

Figure 8: Visualized results of (img001) ×4 SR on Urban100

5 Conclusion

In this paper, we propose an MDRN framework for single-image super-resolution, which uses
residual blocks to fully acquire image details to obtain accurate SR images. Dual learning is used
to improve the model’s performance by introducing additional constraints for the reconstruction
of low-resolution images, reducing the possible mapping space from low-resolution images to high-
resolution images, and reducing the possible mapping space from low-resolution images to high-
resolution images. From the results of the experimental analysis, our method has achieved good results.
Despite these promising results, questions remain. I look forward to more ways to solve such problems
in the future.
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